7 research outputs found

    Multiagent-Based Control for Plug-and-Play Batteries in DC Microgrids with Infrastructure Compensation

    Get PDF
    The influence of the DC infrastructure on the control of power-storage flow in micro- and smart grids has gained attention recently, particularly in dynamic vehicle-to-grid charging applications. Principal effects include the potential loss of the charge–discharge synchronization and the subsequent impact on the control stabilization, the increased degradation in batteries’ health/life, and resultant power- and energy-efficiency losses. This paper proposes and tests a candidate solution to compensate for the infrastructure effects in a DC microgrid with a varying number of heterogeneous battery storage systems in the context of a multiagent neighbor-to-neighbor control scheme. Specifically, the scheme regulates the balance of the batteries’ load-demand participation, with adaptive compensation for unknown and/or time-varying DC infrastructure influences. Simulation and hardware-in-the-loop studies in realistic conditions demonstrate the improved precision of the charge–discharge synchronization and the enhanced balance of the output voltage under 24 h excessively continuous variations in the load demand. In addition, immediate real-time compensation for the DC infrastructure influence can be attained with no need for initial estimates of key unknown parameters. The results provide both the validation and verification of the proposals under real operational conditions and expectations, including the dynamic switching of the heterogeneous batteries’ connection (plug-and-play) and the variable infrastructure influences of different dynamically switched branches. Key observed metrics include an average reduced convergence time (0.66–13.366%), enhanced output-voltage balance (2.637–3.24%), power-consumption reduction (3.569–4.93%), and power-flow-balance enhancement (2.755–6.468%), which can be achieved for the proposed scheme over a baseline for the experiments in question.</p

    Genetic diversity of the Nubian ibex in Oman as revealed by mitochondrial DNA

    Get PDF
    The Nubian ibex (Capra nubiana) is patchily distributed across parts of Africa and Arabia. In Oman, it is one of the few free-ranging wild mammals found in the central and southern regions. Its population is declining due to habitat degradation, human expansion, poaching and fragmentation. Here, we investigated the population's genetic diversity using mitochondrial DNA (D-loop 186 bp and cytochrome b 487 bp). We found that the Nubian ibex in the southern region of Oman was more diverse (D-loop HD; 0.838) compared with the central region (0.511) and gene flow between them was restricted. We compared the genetic profiles of wild Nubian ibex from Oman with captive ibex. A Bayesian phylogenetic tree showed that wild Nubian ibex form a distinct clade independent from captive animals. This divergence was supported by high mean distances (D-loop 0.126, cytochrome b 0.0528) and high FST statistics (D-loop 0.725, cytochrome b 0.968). These results indicate that captive ibex are highly unlikely to have originated from the wild population in Oman and the considerable divergence suggests that the wild population in Oman should be treated as a distinct taxonomic unit. Further nuclear genetic work will be required to fully elucidate the degree of global taxonomic divergence of Nubian ibex populations

    Multiagent Power Flow Control for Plug-and-Play Battery Energy Storage Systems in DC Microgrids

    No full text
    Multiagent reinforcement learning has proven remarkably effective at finding near-optimal solutions to complex non-linear control problems when compared to classical schemes. Such problems typically arise when considering power management problems related to advanced power distribution applications, such as micro/smart grids, smart buildings, electric vehicles, and vehicle-to-grid applications. The achievement of balanced synchronized charge/discharge of energy storage systems in real-time is often a critical factor in fulfilling optimized power flow and enhancing battery health and usable lifetime. It is also critical to reducing power losses, supporting energy/power balance, and integration of renewable/intermittent energy. This paper proposes a control adaptation to optimize the power flow of battery energy systems in a DC autonomous microgrid. Multiagent neighbor-to-neighbor information related to the variation in the load participation and measured state of charge is locally exploited to optimize the balance of power storage. The results confirm accurate synchronization of the charge/discharge and enhanced balanced output voltage under an excessive continuous load variation. In addition, for different expectations of real operation, regarding battery capacities, initial states of charge, environmental impacts, and degradation. Furthermore, the independence of the microgrid operation from the number of battery energy storage systems is verified through plug-and-play insertions and removals.</p

    Reinforcement Learning-Based Intelligent Control Strategies for Optimal Power Management in Advanced Power Distribution Systems: A Survey

    No full text
    Intelligent energy management in renewable-based power distribution applications, such as microgrids, smart grids, smart buildings, and EV systems, is becoming increasingly important in the context of the transition toward the decentralization, digitalization, and decarbonization of energy networks. Arguably, many challenges can be overcome, and benefits leveraged, in this transition by the adoption of intelligent autonomous computer-based decision-making through the introduction of smart technologies, specifically artificial intelligence. Unlike other numerical or soft computing optimization methods, the control based on artificial intelligence allows the decentralized power units to collaborate in making the best decision of fulfilling the administrator’s needs, rather than only a primitive decentralization based only on the division of tasks. Among the smart approaches, reinforcement learning stands as the most relevant and successful, particularly in power distribution management applications. The reason is it does not need an accurate model for attaining an optimized solution regarding the interaction with the environment. Accordingly, there is an ongoing need to accomplish a clear, up-to-date, vision of the development level, especially with the lack of recent comprehensive detailed reviews of this vitally important research field. Therefore, this paper fulfills the need and presents a comprehensive review of the state-of-the-art successful and distinguished intelligent control strategies-based RL in optimizing the management of power flow and distribution. Wherein extensive importance is given to the classification of the literature on emerging strategies, the proposals based on RL multiagent, and the multiagent primary secondary control of managing power flow in micro and smart grids, particularly the energy storage. As a result, 126 of the most relevant, recent, and non-incremental have been reviewed and put into relevant categories. Furthermore, salient features have been identified of the major positive and negative, of each selection

    Strategies for controlling microgrid networks with energy storage systems:A review

    Get PDF
    Distributed Energy Storage Systems are considered key enablers in the transition from the traditional centralized power system to a smarter, autonomous, and decentralized system operating mostly on renewable energy. The control of distributed energy storage involves the coordinated management of many smaller energy storages, typically embedded within microgrids. As such, there has been much recent interest related to controlling aspects of supporting power-sharing balance and sustainability, increasing system resilience and reliability, and balancing distributed state of charge. This paper presents a comprehensive review of decentralized, centralized, multiagent, and intelligent control strategies that have been proposed to control and manage distributed energy storage. It also highlights the potential range of services that can be provided by these storages, their control complications, and proposed solutions. Specific focus on control strategies based upon multiagent communication and reinforcement learning is a main objective of this paper, reflecting recent advancements in digitalization and AI. The paper concludes with a summary of emerging areas and presents a summary of promising future directions
    corecore